
Evolutionary Architecture: Evolving even the language 

Luram Archanjo



Who am I?
● Software Engineer at Sensedia

● MBA in Java projects

● Java and Microservice enthusiastic



Agenda

● Use case

● Microservices

● Evolutionary Architecture

● Challenges to adopt Kotlin

● Kotlin benefits

● Questions



Use case



Use case

Token Service Provider

Tokenization reduces the value of stored payment credentials by removing 
consumers’ primary account numbers (PANs) from the transaction process. It 
does this by replacing them with a unique identifier called a payment token.

This reduces the appeal of stealing the credentials as they would be largely 
useless to hackers.

Source: https://www.rambus.com/blogs/what-is-a-token-service-provider/

https://www.rambus.com/blogs/what-is-a-token-service-provider/


Use case



Microservices



Moving to Microservices

Feature A

Feature B

Feature C

Monolith

Microservice Microservice

Microservices

Microservice



Technological Heterogeneity

Microservice Microservice Microservice

DB DB DB



Evolutionary Architecture



Evolutionary Architecture

An evolutionary architecture supports guided, incremental change as a first 
principle across multiple dimensions.

Source: https://www.thoughtworks.com/books/building-evolutionary-architectures

https://www.thoughtworks.com/books/building-evolutionary-architectures


Our stack



Evolutionary Architecture

Languages

Technologies

Databases



All(15) microservices were written in



We wanted to change, but there 
were many challenges!



● Expertise in Java Frameworks e.g: Spring Stack, Hibernate etc.

● Expertise in Object-Oriented Programming

● Learning curve, sprint in progress

Evolutionary Architecture



         is going to overcome all of 
those challenges?



Yes!!!



Expertise in Java Frameworks
Expertise in Object-Oriented Programming

Learning curve, sprint in progress



Expertise in Java Frameworks

Interoperability: Kotlin is fully compatible with all Java-based frameworks, 
which lets you stay on your familiar technology stack while reaping the benefits of 
a more modern language.

Java code Kotlin code

Java Virtual Machine (JVM)

Bytecode

Source: https://kotlinlang.org/docs/reference/server-overview.html

https://kotlinlang.org/docs/reference/server-overview.html


Expertise in Java Frameworks



Expertise in Java Frameworks

Expertise in Object-Oriented 
Programming

Learning curve, sprint in progress



Expertise in Object-Oriented Programming

Object-oriented programming (OOP) is a programming paradigm based on the 
concept of "objects", which can contain data, in the form of fields (often known 
as attributes), and code, in the form of procedures (often known as methods).

Source: https://en.wikipedia.org/wiki/Object-oriented_programming

Code

data class Person(val firstName: String, val surname: String, val age: Int) {

   fun fullName() = "$firstName $surname"

}

https://en.wikipedia.org/wiki/Object-oriented_programming


Expertise in Object-Oriented Programming

Functional programming is a programming paradigm based structures and 
elements of computer programs, that treats computation as the evaluation of 
mathematical functions and avoids changing-state and mutable data.

Source: https://en.wikipedia.org/wiki/Functional_programming

Code

data class Person(val name: String, String, val age: Int)

val persons = listOf(Person("Person 1", 15), Person("Person 2", 22))

persons.filter { person -> person.age >= 18 }

https://en.wikipedia.org/wiki/Functional_programming


Expertise in Java Frameworks
Expertise in Object-Oriented Programming

Learning curve, sprint in 
progress



Learning curve, sprint in progress

Source: https://kotlinlang.org/docs/reference/server-overview.html

Migration: Kotlin supports gradual, step by step migration of large codebases 
from Java to Kotlin. You can start writing new code in Kotlin while keeping older 
parts of your system in Java.

Microservice

Java

Microservice

Java

Kotlin

Microservice

Kotlin

https://kotlinlang.org/docs/reference/server-overview.html


Learning curve, sprint in progress



Kotlin benefits



40% less code



40% less code

Java
public class Person {
  
   private final String name;
   private final Integer age;

   public Person(String name, Integer age) {
       this.name = name;
       this.age = age;
   }

   public String getName() {
       return name;
   }

   public Integer getAge() {
       return age;
   }

}

Kotlin

data class Person(val name: String, val age: Int)  

Default Values

data class Person(val name: String = "Unknown", val age: Int = 0)

Initialization
val person = Person("Luram Archanjo", 25)

val person = Person() // Name = Unknown & age = 0



Null Safety



Null Safety

Java

final Person person = null; // accept null

person.getName().length();

Exception java.lang.NullPointerException

Kotlin

val person: Person = null // compilation error

val person: Person? = null // accept null

person.name.length // compilation error

Safe Calls

person?.name?.length // return null

Elvis Operator

person?.name?.length ?: 0 // return 0 if null



Performs lots of checks, 
reducing runtime errors and 
the number of bugs in the 

code



Who is using Kotlin?
Why?



Who is using Kotlin? Why?

Source: https://github.com/ygaller/kotlin-companies/wiki

https://github.com/ygaller/kotlin-companies/wiki


Fail-fast principle
=

Time to market



Summary

2º Place

1º Place

3º PlaceInteroperable with Java

● Known 
frameworks

● Low learn curve

Concise

● Easier to maintain

● Easier to read

● Easier to apply 
changes when 
necessary

Modern

● Safe compiler

● Type interface

● Collection

● Lambdas



Thanks a million!
Questions?

/larchanjo

/luram-archanjo


